Copied to
clipboard

G = C42.35Q8order 128 = 27

35th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.35Q8, C23.452C24, C22.2372+ 1+4, C22.1832- 1+4, C4⋊C4.23Q8, C4⋊C4.235D4, C4.27(C4⋊Q8), C43(C42.C2), C2.52(D46D4), C429C4.29C2, C2.25(Q86D4), C2.32(D43Q8), C2.17(Q83Q8), (C22×C4).97C23, (C2×C42).557C22, C22.303(C22×D4), C22.102(C22×Q8), C2.C42.189C22, C23.81C23.15C2, C23.65C23.54C2, C2.13(C23.41C23), (C4×C4⋊C4).65C2, C2.15(C2×C4⋊Q8), (C2×C4).78(C2×D4), (C2×C4).52(C2×Q8), C2.15(C2×C42.C2), (C2×C4).823(C4○D4), (C2×C4⋊C4).305C22, C22.328(C2×C4○D4), (C2×C42.C2).20C2, SmallGroup(128,1284)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.35Q8
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C42.35Q8
C1C23 — C42.35Q8
C1C23 — C42.35Q8
C1C23 — C42.35Q8

Generators and relations for C42.35Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=b2c2, ab=ba, cac-1=a-1b2, dad-1=ab2, bc=cb, dbd-1=b-1, dcd-1=b2c-1 >

Subgroups: 356 in 226 conjugacy classes, 124 normal (28 characteristic)
C1, C2, C4, C4, C22, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C42.C2, C4×C4⋊C4, C429C4, C429C4, C23.65C23, C23.81C23, C2×C42.C2, C42.35Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C42.C2, C4⋊Q8, C22×D4, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C42.C2, C2×C4⋊Q8, C23.41C23, D46D4, Q86D4, D43Q8, Q83Q8, C42.35Q8

Smallest permutation representation of C42.35Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 15 44 50)(2 16 41 51)(3 13 42 52)(4 14 43 49)(5 36 37 127)(6 33 38 128)(7 34 39 125)(8 35 40 126)(9 22 17 46)(10 23 18 47)(11 24 19 48)(12 21 20 45)(25 57 54 30)(26 58 55 31)(27 59 56 32)(28 60 53 29)(61 65 72 100)(62 66 69 97)(63 67 70 98)(64 68 71 99)(73 80 111 114)(74 77 112 115)(75 78 109 116)(76 79 110 113)(81 101 108 88)(82 102 105 85)(83 103 106 86)(84 104 107 87)(89 117 124 96)(90 118 121 93)(91 119 122 94)(92 120 123 95)
(1 63 55 10)(2 69 56 17)(3 61 53 12)(4 71 54 19)(5 106 80 91)(6 82 77 121)(7 108 78 89)(8 84 79 123)(9 41 62 27)(11 43 64 25)(13 65 29 21)(14 99 30 48)(15 67 31 23)(16 97 32 46)(18 44 70 26)(20 42 72 28)(22 51 66 59)(24 49 68 57)(33 102 112 93)(34 88 109 117)(35 104 110 95)(36 86 111 119)(37 83 114 122)(38 105 115 90)(39 81 116 124)(40 107 113 92)(45 52 100 60)(47 50 98 58)(73 94 127 103)(74 118 128 85)(75 96 125 101)(76 120 126 87)
(1 119 26 103)(2 95 27 87)(3 117 28 101)(4 93 25 85)(5 67 114 47)(6 99 115 24)(7 65 116 45)(8 97 113 22)(9 35 69 76)(10 127 70 111)(11 33 71 74)(12 125 72 109)(13 89 60 81)(14 121 57 105)(15 91 58 83)(16 123 59 107)(17 126 62 110)(18 36 63 73)(19 128 64 112)(20 34 61 75)(21 39 100 78)(23 37 98 80)(29 108 52 124)(30 82 49 90)(31 106 50 122)(32 84 51 92)(38 68 77 48)(40 66 79 46)(41 120 56 104)(42 96 53 88)(43 118 54 102)(44 94 55 86)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,15,44,50)(2,16,41,51)(3,13,42,52)(4,14,43,49)(5,36,37,127)(6,33,38,128)(7,34,39,125)(8,35,40,126)(9,22,17,46)(10,23,18,47)(11,24,19,48)(12,21,20,45)(25,57,54,30)(26,58,55,31)(27,59,56,32)(28,60,53,29)(61,65,72,100)(62,66,69,97)(63,67,70,98)(64,68,71,99)(73,80,111,114)(74,77,112,115)(75,78,109,116)(76,79,110,113)(81,101,108,88)(82,102,105,85)(83,103,106,86)(84,104,107,87)(89,117,124,96)(90,118,121,93)(91,119,122,94)(92,120,123,95), (1,63,55,10)(2,69,56,17)(3,61,53,12)(4,71,54,19)(5,106,80,91)(6,82,77,121)(7,108,78,89)(8,84,79,123)(9,41,62,27)(11,43,64,25)(13,65,29,21)(14,99,30,48)(15,67,31,23)(16,97,32,46)(18,44,70,26)(20,42,72,28)(22,51,66,59)(24,49,68,57)(33,102,112,93)(34,88,109,117)(35,104,110,95)(36,86,111,119)(37,83,114,122)(38,105,115,90)(39,81,116,124)(40,107,113,92)(45,52,100,60)(47,50,98,58)(73,94,127,103)(74,118,128,85)(75,96,125,101)(76,120,126,87), (1,119,26,103)(2,95,27,87)(3,117,28,101)(4,93,25,85)(5,67,114,47)(6,99,115,24)(7,65,116,45)(8,97,113,22)(9,35,69,76)(10,127,70,111)(11,33,71,74)(12,125,72,109)(13,89,60,81)(14,121,57,105)(15,91,58,83)(16,123,59,107)(17,126,62,110)(18,36,63,73)(19,128,64,112)(20,34,61,75)(21,39,100,78)(23,37,98,80)(29,108,52,124)(30,82,49,90)(31,106,50,122)(32,84,51,92)(38,68,77,48)(40,66,79,46)(41,120,56,104)(42,96,53,88)(43,118,54,102)(44,94,55,86)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,15,44,50)(2,16,41,51)(3,13,42,52)(4,14,43,49)(5,36,37,127)(6,33,38,128)(7,34,39,125)(8,35,40,126)(9,22,17,46)(10,23,18,47)(11,24,19,48)(12,21,20,45)(25,57,54,30)(26,58,55,31)(27,59,56,32)(28,60,53,29)(61,65,72,100)(62,66,69,97)(63,67,70,98)(64,68,71,99)(73,80,111,114)(74,77,112,115)(75,78,109,116)(76,79,110,113)(81,101,108,88)(82,102,105,85)(83,103,106,86)(84,104,107,87)(89,117,124,96)(90,118,121,93)(91,119,122,94)(92,120,123,95), (1,63,55,10)(2,69,56,17)(3,61,53,12)(4,71,54,19)(5,106,80,91)(6,82,77,121)(7,108,78,89)(8,84,79,123)(9,41,62,27)(11,43,64,25)(13,65,29,21)(14,99,30,48)(15,67,31,23)(16,97,32,46)(18,44,70,26)(20,42,72,28)(22,51,66,59)(24,49,68,57)(33,102,112,93)(34,88,109,117)(35,104,110,95)(36,86,111,119)(37,83,114,122)(38,105,115,90)(39,81,116,124)(40,107,113,92)(45,52,100,60)(47,50,98,58)(73,94,127,103)(74,118,128,85)(75,96,125,101)(76,120,126,87), (1,119,26,103)(2,95,27,87)(3,117,28,101)(4,93,25,85)(5,67,114,47)(6,99,115,24)(7,65,116,45)(8,97,113,22)(9,35,69,76)(10,127,70,111)(11,33,71,74)(12,125,72,109)(13,89,60,81)(14,121,57,105)(15,91,58,83)(16,123,59,107)(17,126,62,110)(18,36,63,73)(19,128,64,112)(20,34,61,75)(21,39,100,78)(23,37,98,80)(29,108,52,124)(30,82,49,90)(31,106,50,122)(32,84,51,92)(38,68,77,48)(40,66,79,46)(41,120,56,104)(42,96,53,88)(43,118,54,102)(44,94,55,86) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,15,44,50),(2,16,41,51),(3,13,42,52),(4,14,43,49),(5,36,37,127),(6,33,38,128),(7,34,39,125),(8,35,40,126),(9,22,17,46),(10,23,18,47),(11,24,19,48),(12,21,20,45),(25,57,54,30),(26,58,55,31),(27,59,56,32),(28,60,53,29),(61,65,72,100),(62,66,69,97),(63,67,70,98),(64,68,71,99),(73,80,111,114),(74,77,112,115),(75,78,109,116),(76,79,110,113),(81,101,108,88),(82,102,105,85),(83,103,106,86),(84,104,107,87),(89,117,124,96),(90,118,121,93),(91,119,122,94),(92,120,123,95)], [(1,63,55,10),(2,69,56,17),(3,61,53,12),(4,71,54,19),(5,106,80,91),(6,82,77,121),(7,108,78,89),(8,84,79,123),(9,41,62,27),(11,43,64,25),(13,65,29,21),(14,99,30,48),(15,67,31,23),(16,97,32,46),(18,44,70,26),(20,42,72,28),(22,51,66,59),(24,49,68,57),(33,102,112,93),(34,88,109,117),(35,104,110,95),(36,86,111,119),(37,83,114,122),(38,105,115,90),(39,81,116,124),(40,107,113,92),(45,52,100,60),(47,50,98,58),(73,94,127,103),(74,118,128,85),(75,96,125,101),(76,120,126,87)], [(1,119,26,103),(2,95,27,87),(3,117,28,101),(4,93,25,85),(5,67,114,47),(6,99,115,24),(7,65,116,45),(8,97,113,22),(9,35,69,76),(10,127,70,111),(11,33,71,74),(12,125,72,109),(13,89,60,81),(14,121,57,105),(15,91,58,83),(16,123,59,107),(17,126,62,110),(18,36,63,73),(19,128,64,112),(20,34,61,75),(21,39,100,78),(23,37,98,80),(29,108,52,124),(30,82,49,90),(31,106,50,122),(32,84,51,92),(38,68,77,48),(40,66,79,46),(41,120,56,104),(42,96,53,88),(43,118,54,102),(44,94,55,86)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim111111222244
type++++++-+-+-
imageC1C2C2C2C2C2Q8D4Q8C4○D42+ 1+42- 1+4
kernelC42.35Q8C4×C4⋊C4C429C4C23.65C23C23.81C23C2×C42.C2C42C4⋊C4C4⋊C4C2×C4C22C22
# reps123442444811

Matrix representation of C42.35Q8 in GL6(𝔽5)

010000
400000
002000
000300
000003
000030
,
400000
040000
002000
000300
000010
000001
,
010000
100000
004000
000100
000030
000002
,
400000
040000
000100
004000
000002
000020

G:=sub<GL(6,GF(5))| [0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,3,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0] >;

C42.35Q8 in GAP, Magma, Sage, TeX

C_4^2._{35}Q_8
% in TeX

G:=Group("C4^2.35Q8");
// GroupNames label

G:=SmallGroup(128,1284);
// by ID

G=gap.SmallGroup(128,1284);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,568,758,723,268,675,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b^2*c^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽